Continuous constant flow rate is an inefficient platform for performing mixing, separations, incubation, and monitoring, because these operations require different times frames for optimum performance. Therefore transporting samples trough the flow path at a constant flow rate, compromises efficiency of an assay, as much as it as it would impair driving of a car, equipped with only one forward gear. Curiously, almost all flow injection protocols are still based on continuous flow basis, the legacy of Auto Analyzer .
Programed Flow Injection (pFI) introduced for the first time in this Tutorial (1.2.21.), employs different flow rates within an individual assay cycle in order to enhance the analytical readout, reduce reagent consumption and waste generation.
For assays carried out in a traditional cFI system, operated at constant flow rate, the only way to increase the incubation time and sensitivity of measurement, is to increase the length of reaction coil. This increases dispersion of sample, decreases sampling frequency and generates an excessive volume of chemical waste. By slowing flow rate, when the sample is in a short reaction coil , the incubation time is increased, without increase of dispersion and the sensitivity of assay is enhanced. A conventional cFI instrument can be upgraded in this way, if the flow rate of peristaltic pump can be programmed, to mix sample with reagent at fast 100% flowrate , incubate reaction mixture at 2% flow rate, and monitor signal at 50% flow rate (Section 1.2.21.)
Flow Programming for Flow Injection
Once you have exhausted all possibilities and failed, there will
be one solution, simple and obvious, highly visible to everyone else.
SNAFU